#### **Evaluating Multiple Interval Forecasts**

Christian Brownlees Andre B.M. Souza

Universitat Pompeu Fabra & Barcelona GSE



# Introduction



#### Introduction

- Interval forecasts are extensively used in Finance and Economics.
- Often, practitioners are faced with the task of producing interval forecasts for multiple time series
- *i.e* Value-at-Risk forecasts for multiple trading desks, M4 Competition.
  Berkowitz, Christoffersen, and Pelletier (2011), Makridakis, Spiliotis, and Assimakopoulos (2018)
- Most of the backtesting methodology is designed for univariate series Christoffersen (1998), Engle and Manganelli (2004)
- Little work has been done on the evaluation of multiple interval forecasts. Length has been used, but properties are unclear.
   Askanazi, Diebold, Shin, and Schorfheide (2018), Makridakis et al. (2018)

#### In this work...

- We develop a methodology to evaluate multiple interval forecasts
- We assume a forecaster has *M* collections of interval forecasts for a panel of time series and must provide a ranking.
   All forecasts are assumed to have correct coverage for all series
- We propose as an optimality criteria to select the method that minimizes a measure of dependence across cross-sectional violations Everything equal, forecasters prefers methods that minimize the probability of simultaneous interval forecast violations.
- We develop a data-driven selection procedure and establish its consistency.



### Empirical Illustration

- We apply the proposed methodology to evaluate common interval forecasting methods for all S&P 500 components
- VaR forecasts: GARCH, TARCH, Factor GARCH and Rolling Window
- Our methodology selects the collection generated by the F-GARCH
- Financial crisis: 78% reduction in simultaneous hits when compared to RW and 20% when compared to TARCH.

#### **Related Literature**

- 1 Absolute evaluation of interval forecasts
  - Christoffersen (1998), Engle and Manganelli (2004).
- 2 Relative evaluation of interval forecasts
  - Askanazi et al. (2018), Winkler (1972), Giacomini and Komunjer (2005), Gneiting and Raftery (2007).
- 3 Evaluation of vectors of forecasts
  - Sinclair, Stekler, and Carnow (2015), Hendry and Martinez (2017).

#### 4 Risk Management

Berkowitz et al. (2011), Escanciano and Olmo (2011), Escanciano and Hualde (2017)



# Methodology



#### Setup

• Let  $Y_t$  denote a *n*-dimensional vector of time series observed from t = 1, ..., T.

An interval forecast for series *i* at time *t* with coverage  $1 - \alpha$  is

$$PI_{it} = [PI_{it}^L, PI_{it}^U]$$
 s.t  $\mathbb{P}(Y_{it} \in PI_{it}) = 1 - \alpha$ 

There are m = 1, ..., M procedures to construct interval forecasts with nominal coverage  $1 - \alpha$  and we denote by

$$\mathcal{P}_m = \{ PI_{m\,i,t} \}_{i=1,t=1}^{n,T}$$

upf.

5/22

the collection of such forecasts generated by method m.

• We are interested in ranking the collections  $\mathcal{P}_m$  for  $m = 1, \dots, M$ . Brownlees and Souza (2020)



- We **do not** consider prediction regions with uniform coverage  $(1 \alpha)$ . Already considered in Christoffersen (1998).
- Without loss of generality, we focus on 1-step ahead interval forecasts rather than *h*-step ahead forecasts
- One may want to combine collections. For simplicity, we do not consider this.
- We assume all intervals are based on the same quantiles for all series



### Methodology

- Let  $H_{mit} = \mathbf{1}\{Y_{it} \notin PI_{mit}\}$  be the hit variable for series *i* at time *t*, generated by method *m*.
- It is standard to evaluate interval forecasts by the properties of the univariate series of hits.
- We assume methods have correct (unc.) coverage i.e.  $\mathbb{E}[H_{mit}] = \alpha$
- Our evaluation methodology is based on the cross-sectional properties of  $\mathbf{H}_t = (H_{m1t}, \dots, H_{mnt})'$
- We assume  $\mathbf{H}_t$  is covariance stationary.



Methodology

### Efficiency Criteria

We propose to rank collections according to their dependence properties.

#### **Definition** Efficiency

Assume we have  $m = 1, \ldots, M$  collections of prediction intervals. Let

$$\bar{\tau}_m = \frac{2}{n(n-1)} \sum_{i=1}^n \sum_{j=1}^{i-1} \mathbb{P}(H_{mit} \cap H_{mjt}) .$$

Then we say a collection  $m^*$  is efficient if

$$m^* = \arg\min_{m\in M} \left| \bar{\tau}_m - \alpha^2 \right|$$

Reminiscent to mixing, mutual information, KL divergences, etc...



Brownlees and Souza (2020)

8/22

#### Remarks on Criteria

#### ■ Univariate Setting: Length vs Coverage

- Shorter intervals are presumably conditioning on more valuable information sets. Granger, White, and Kamstra (1989)
- Multivariate: Length vs Coverage vs Dependence
  - Given correct unconditional coverage, we assume forecasters prefer collections of intervals where the dependence between violations is minimized.
  - 2 Other optimality criteria (or combinations of such) may be chosen.
  - 3 Askanazi et al. (2018): Lengths are not directly comparable across series with different scales.

■ Correct (Unc.) Coverage is empirically hard to reject. Berkowitz (2001)



#### Example

Consider a simple linear model:

$$Y_{it} = X_t + Z_{it}$$
  $X_t \sim N(0,1), Z_{it} \sim N(0,1)$ 

and the following PIs:

$$PI_{1\,it} = \left[\sqrt{2}\Phi^{-1}\left(\frac{\alpha}{2}\right), \sqrt{2}\Phi^{-1}\left(1-\frac{\alpha}{2}\right)\right]$$
$$PI_{2\,it} = \left[X_t + \Phi^{-1}\left(\frac{\alpha}{2}\right), X_t + \Phi^{-1}\left(1-\frac{\alpha}{2}\right)\right]$$

For i = 1, ..., n, t = 1, ..., T and where  $\Phi$  is the standard normal cdf.

Brownlees and Souza (2020)



- Both methods provide correct unconditional coverage
- Simultaneous hits are more likely under method 1 than method 2
- In this example we know that X<sub>t</sub> drives the factor structure in the panel, so we can easily test for optimality wrt X<sub>t</sub>
- If we dont know what drives the panel, we have a model selection issue.



#### Evaluation

The following lemma makes our definition of efficiency operational.

#### Lemma

Let

$$\overline{H}_{mt} = \frac{1}{n} \sum_{i=1}^{n} H_{mit} \qquad \text{and} \qquad \overline{\tau}_{m} = \frac{2}{n(n-1)} \sum_{i=1}^{n} \sum_{j=1}^{i-1} \mathbb{P}(H_{mit} \cap H_{mjt})$$

Then, under the previously stated assumptions and assuming additionally  $\overline{\tau}_m \ge \alpha^2$  for all m = 1, ..., M, we have that

$$\arg\min_{m\in\mathcal{M}}\mathbb{E}\left[(\overline{H}_{m\,t}-\alpha)^2\right] = \arg\min_{m\in\mathcal{M}}\left|\overline{\tau}_m-\alpha^2\right|$$



Brownlees and Souza (2020)



- We restrict  $\overline{\tau}_m$  to be at least that obtained under cross-sectional independence.
- Empirically justified in Finance and Economics.
- We note that  $\overline{\tau}_m \ge \alpha^2 \frac{\alpha(1-\alpha)}{n-1}$ , so the assumption  $\overline{\tau}_m \ge \alpha^2$  is not so restrictive, for *n* large.



#### **Empirical Evaluation**

• We evaluate collections by the empirical analog of  $\mathbb{E}\left[(\overline{H}_{mt} - \alpha)^2\right]$ :

$$L_m = \frac{1}{T} \sum_{t=1}^{T} \left( \frac{1}{n} \sum_{i=1}^{N} H_{mit} - \alpha \right)^2$$

• We assume  $\mathbf{H}_t = (H_{m1t}, \dots, H_{mnt})'$  is strong mixing with coefficient  $\psi$  that satisfies:

$$\psi(I) \leqslant \exp\left(-AI^{\beta}\right)$$

for some A > 0 and  $\beta > 1$ .



#### **Empirical Evaluation**

#### Lemma

Let  $m^*$  be the efficient collection and  $\hat{m}^* = \arg \min_{m \in M} L_m$  Then,

$$\mathbb{P}\left(\widehat{m}^* = m^*\right) \ge 1 - C \exp\left\{\log(M) - \frac{(n-1)}{n} \left(\overline{\tau}_{m'} - \overline{\tau}_{m^*}\right) T^{\frac{\beta}{\beta+1}}\right\}$$

where  $m' = \arg \min_{m \in M \setminus m^*} \mathbb{E}[(\overline{H}_{mt} - \alpha)^2]$  and for a constant C.

• (Rate) Stronger time series dependence leads to slower selection

• (# of Collections) M can grow as a power of T.

# **Empirical Application**



### Empirical Application

- We apply our framework to evaluate Value-at-Risk forecasting methods for the individual components of S&P500.
- We consider log returns for the S&P 500 components, from 01/01/2000 to 01/01/2019.
- VaR forecasts are constructed using Rolling Window, GARCH, TARCH and Factor GARCH.
- We take 25% of the available observations for each stock as the in sample period. We re-estimate the volatility parameters once per year out of sample.
- We construct quantile forecasts by means of Filtered Historical Simulation (Barone-Adesi, Engle, and Mancini (2008))

#### Empirical Application: Results

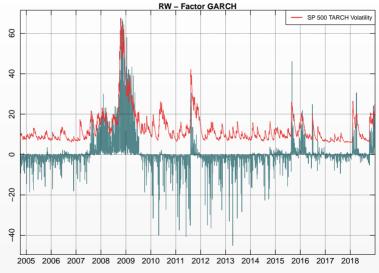
|                                                               | Factor GARCH | TARCH  | GARCH  | Rolling Window |
|---------------------------------------------------------------|--------------|--------|--------|----------------|
| Average Hits(%)                                               | 4.796        | 5.015  | 4.954  | 5.138          |
| Average Length                                                | 2.982        | 2.898  | 2.914  | 3.099          |
| UC(1%)                                                        | 93.8%        | 98.4%  | 98.2%  | 89.4%          |
| CC(1%)                                                        | 85.2%        | 93.1%  | 87.4%  | 20.4%          |
| DQ(1%)                                                        | 74.5%        | 75.8%  | 63.4%  | 7.30%          |
| $\overline{	au} 	imes 100$ (Note: $lpha^2 	imes 100 = 0.25$ ) | 0.807        | 0.876  | 0.901  | 1.212          |
| Loss                                                          | 17.604       | 19.152 | 19.484 | 27.852         |

Since  $\mathbb{E}L_m \leqslant \alpha(1-\alpha)$ , we report  $Loss_m = \frac{L_m}{\alpha(1-\alpha)} \times 100$ 



**Empirical Application** 

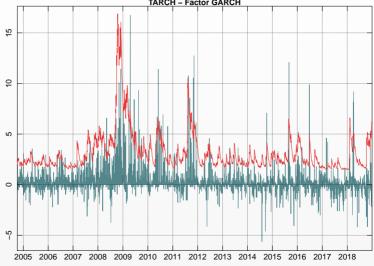
### Empirical Application: Figures



Brownlees and Souza (2020)

**Empirical Application** 

### Empirical Application: Figures



TARCH - Factor GARCH

Brownlees and Souza (2020)

# Conclusion



■ We introduce a criteria to evaluate multiple interval forecasts

- We propose to rank methods according to the dependence properties of the collection of hit series
- We apply our framework to evaluate methods to construct VaR forecasts for each of the S&P500 stocks
- Methods that incorporate the factor structure of volatility reduce the dependence across VaR hits, performing better according to the proposed metric.



# Thanks!



## Bibliography

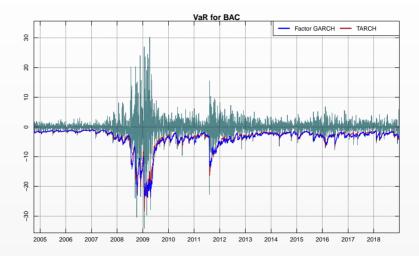
- Ross Askanazi, Francis X. Diebold, Minchul Shin, and Frank Schorfheide. On the comparison of interval forecasts. Journal of Time Series Analysis, 39:953–965, Sep 2018. doi: 10.1111/jtsa.12426.
- Giovanni Barone-Adesi, Robert F. Engle, and Loriani Mancini. A garch option pricing model with filtered historical simulation. *Review of Financial Studies*, 21(3):1223–1258, May 2008. doi: 10.1093/rfs/hhn031.
- Jeremy Berkowitz. Testing density forecasts, with applications to risk management. Journal of Business & Economics Statistics, 19: 465–474, 2001. doi: 10.1198/07350010152596718.
- Jeremy Berkowitz, Peter Christoffersen, and Denis Pelletier. Evaluating value-at-risk models with desk-level data. Management Science, 12:2213-2227, 2011.
- Peter Christoffersen. Evaluating interval forecasts. International Economic Review, 39(4):841-862, Nov 1998.
- Robert F. Engle and Simone Manganelli. Caviar: Conditional autoregressive value at risk by regression quantiles. Journal of Business & Economics Statistics, 22:367–381, Oct 2004. doi: 10.1198/07350010400000370.
- J. Carlos Escanciano and Javier Hualde. Measuring asset market linkages: Nonlinear dependence and tail risk. Working Paper, 2017.
- J. Carlos Escanciano and Jose Olmo. Robust backtesting tests for value-at-risk models. Journal of Financial Econometrics, 9:132–161, 2011.
- Raffaella Giacomini and Ivana Komunjer. Evaluation and combination of conditional quantile forecasts. Journal of Business & Economics Statistics, 23(4):416–431, 2005.
- Tilmann Gneiting and Adrian E. Raftery. Strictly proper scoring rules, prediction, and estimation. Journal of the American Statistical Association, 102:359–378, 2007. doi: 10.1198/016214506000001437.
- Clive W.G Granger, Halbert White, and Mark Kamstra. Interval forecasting: An analysis based upon arch-quantile estimators. Journal of Econometrics, 40:87–96, 1989.
- David F. Hendry and Andrew B. Martinez. Evaluating multi-step system forecasts with relatively few forecast-error observations. International Journal of Forecasting, 33:359–372, 2017.
- Spyros Makridakis, Evangelos Spiliotis, and Vassilios Assimakopoulos. The m4 competition: Results, findings, conclusion and way forward. International Journal of Forecasting, 34:802–808, 2018.
- Tara M. Sinclair, Herman O. Stekler, and Warren Carnow. Evaluating a vector of the fed's forecasts. International Journal of Forecasting, 31:157–164, 2015.
- Robert L. Winkler. A decision theoretic approach to interval estimation. Journal of the American Statistical Association, 67:187–191, 1972. doi: 10.1080/01621459.1972.10481224.

# Appendix



#### Appendix

## Empirical Application: Figures





#### Appendix

## Empirical Application: Additional Table

|                  | Factor GARCH | TARCH  | GARCH  | Rolling Window |
|------------------|--------------|--------|--------|----------------|
| Loss             | 20.940       | 22.553 | 22.854 | 34.180         |
| Average Hits(%)  | 5.005        | 5.186  | 5.116  | 5.662          |
| $\overline{	au}$ | 0.907        | 0.971  | 0.996  | 1.395          |
| UC(10%)          | 1            | 0.997  | 1      | 0.914          |
| CC(1%)           | 0.830        | 0.894  | 0.769  | 0.058          |
| Length           | 2.920        | 2.846  | 2.862  | 3.030          |

